approximate a quadratic mapping in multi-banach spaces, a fixed point approach
Authors
abstract
begin{abstract}using the fixed point method, we prove the generalized hyers--ulam--rassiasstability of the following functional equation in multi-banach spaces:begin{equation} sum_{ j = 1}^{n}fbig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}big) =(n-6) fbig(sum_{ i = 1}^{n} x_{i}big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}end{abstract}
similar resources
Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach
Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}
full textOn approximate dectic mappings in non-Archimedean spaces: A fixed point approach
In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubicand quartic functional equations with constants coecients in the sense of dectic mappings in non-Archimedean normed spaces.
full textApproximate mixed additive and quadratic functional in 2-Banach spaces
In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.
full textStability of a Mixed Type Functional Equation on Multi-Banach Spaces: A Fixed Point Approach
full text
Approximate multi-additive mappings in 2-Banach spaces
A mapping $f:V^n longrightarrow W$, where $V$ is a commutative semigroup, $W$ is a linear space and $n$ is a positive integer, is called multi-additive if it is additive in each variable. In this paper we prove the Hyers-Ulam stability of multi-additive mappings in 2-Banach spaces. The corollaries from our main results correct some outcomes from [W.-G. Park, Approximate additive mappings i...
full textAPPROXIMATE FIXED POINT IN FUZZY NORMED SPACES FOR NONLINEAR MAPS
We de ne approximate xed point in fuzzy norm spaces and prove the existence theorems, we also consider approximate pair constructive map- ping and show its relation with approximate fuzzy xed point.
full textMy Resources
Save resource for easier access later
Journal title:
international journal of nonlinear analysis and applicationsPublisher: semnan university
ISSN
volume 7
issue 1 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023